Subharmonic Solutions for Subquadratic Hamiltonian Systems
نویسندگان
چکیده
منابع مشابه
Subharmonic Solutions for First-order Hamiltonian Systems
In this article, we study the existence of periodic and subharmonic solutions for a class of non-autonomous first-order Hamiltonian systems such that the nonlinearity has a growth at infinity faster than |x|α, 0 ≤ α < 1. We also study the minimality of periods for such solutions. Our results are illustrated by specific examples. The proofs are based on the least action principle and a generaliz...
متن کاملSUBHARMONIC SOLUTIONS FOR NONAUTONOMOUS SUBLINEAR p–HAMILTONIAN SYSTEMS
Some existence theorems are obtained for subharmonic solutions of nonautonomous p -Hamiltonian systems by the minimax methods in critical point theory. Mathematics subject classification (2010): 34C25.
متن کاملMultiplicity of Homoclinic Solutions for Fractional Hamiltonian Systems with Subquadratic Potential
In this paper, we study the existence of homoclinic solutions for the fractional Hamiltonian systems with left and right Liouville–Weyl derivatives. We establish some new results concerning the existence and multiplicity of homoclinic solutions for the given system by using Clark’s theorem from critical point theory and fountain theorem.
متن کاملHomoclinic orbits for discrete Hamiltonian systems with subquadratic potential
where n ∈ Z, u ∈ RN , u(n) = u(n + ) – u(n) is the forward difference operator, p,L : Z→ RN×N and W : Z× RN → R. As usual, we say that a solution u(n) of system (.) is homoclinic (to ) if u(n)→ as n→±∞. In addition, if u(n) ≡ , then u(n) is called a nontrivial homoclinic solution. In general, system (.) may be regarded as a discrete analogue of the following second order Hamiltonian sy...
متن کاملSubharmonic solutions of a nonconvex noncoercive Hamiltonian system
In this paper we study the existence of subharmonic solutions of the Hamiltonian system Jẋ + u∗∇G(t, u(x)) = e(t) where u is a linear map, G is a C-function and e is a continuous function.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1995
ISSN: 0022-0396
DOI: 10.1006/jdeq.1995.1007